The coordination polyhedron, illustrated in Fig. 2, has imposed $C_{2}$ symmetry, the U and the water $\mathrm{O}[\mathrm{O}(W 1)]$ atoms lying on a crystallographic twofold axis. Its geometry (Table 2) may be described as intermediate between the tricapped trigonal prism (TCTP) of symmetry $D_{3 h}$ and the capped square antiprism (CSAP) of symmetry $C_{4 v^{*}}$. The distortion from TCTP towards CSAP is shown by the $\delta$ angles (Drew, 1977) reported in Table 2, and especially by the three $\delta$ angles over the $v$ edges. Two possible CSAP's can be derived from the TCTP depending on which of the capping atoms $[\mathrm{O}(W 1)$ or $\mathrm{O}(2)]$ in the TCTP polyhedron is chosen as capping atom in the CSAP. One would expect the CSAP with $\mathrm{O}(W 1)$ as capping atom to be the most appropriate choice, but geometrical features (Table 3) indicate that the distortion is towards the CSAP, capped with the oxalate $\mathrm{O}(2)$ atom [c111 isomer among the seven isomers proposed for the form $M$ (unidentate)(bidentate) ${ }_{4}$ by Drew (1977)]. This observation is in agreement with the results of calculations in the hard-sphere model (Burgi, 1973), which predict that $s_{1}$ edges are unsuitable for a bidentate ligand.

The crystal packing is illustrated in Fig. 3. $\mathrm{Ba}-\mathrm{O}$ and $\mathrm{O}-\mathrm{O}$ (probable hydrogen bonds) contacts are reported in Table 3. There are two symmetrically non-equivalent Ba atoms per asymmetric unit. They interact with the oxalate O atoms which are not coordinated to the U atom. The oxalate groups thus behave as quadridentate


Fig. 3. View of the unit cell along the $c$ axis.
ligands, acting as bridges between the U and Ba atoms. The two Ba atoms are also coordinated to the nearest-neighbour water O atoms and reach coordination number ten $[\mathrm{Ba}(1)]$ or eleven $[\mathrm{Ba}(2)]$. The high temperature factors of the water O atoms $\mathrm{O}(W 4)$ and $\mathrm{O}(W 5)$ indicate some disorder in the relatively large holes of the packing.

## References

Akhtar, M. N. \& Smith, A. J. (1975). Acta Cryst. B31, 1361-1366.
Burgi, H. B. (1973). Inorg. Chem. 12, 2321-2325.
Drew, M. G. B. (1977). Coord. Chem. Rev. 24, 179-275.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft.
favas, M. C., Kepert, D. L., Patrick, J. M. \& White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 571-581.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

# Structure of trans-Diiodobis(triphenylstibine)palladium(II) and Observations on the Pd-I Bond Length 

By M. Mathew and G. J. Palenik<br>Center for Molecular Structure, Chemistry Department, University of Florida, Gainesville, FL 3261 1, USA

and C. A. McAuliffe<br>Institute of Science and Technology, The University of Manchester, PO Box 88, Manchester M60 1QD, England

(Received 10 February 1986; accepted 28 July 1986)


#### Abstract

PdI}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sb}\right\}_{2}\right], M_{r}=1066 \cdot 34\), triclinic, $P \overline{1}, a=10.005$ (1), $b=10.121$ (1), $c=10.208$ (1) $\AA$, $\alpha=105.70(1), \quad \beta=93.53(1), \gamma=116.96(1)^{\circ}, \quad V=$ 866.3 (2) $\AA^{3}, Z=1, F(000)=500, D_{x}=2.044, D_{m}$ $=2.0 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=38.5 \mathrm{~cm}^{-1}$. Final $R=0.054, w R=0.050$ for 2134 reflections with $I \geq 2 \sigma(I)$. Room temperature. The title compound is a centrosymmetric four-coordinate complex with no


unusually short intermolecular contacts. The $\mathrm{Pd}-\mathrm{I}$ distance of 2.590 (1) $\AA$ is in agreement with the average of 2.596 (12) $\AA$ from 19 reported Pd-I distances when $\mathrm{I}, \mathrm{N}$ or S is the trans atom. The $\mathrm{Pd}-\mathrm{I}$ distance increases to 2.653 (11) $\AA$ when P, As or C is the trans atom. A trans effect causes the $\mathrm{Pd}-\mathrm{Sb}$ distance of 2.578 (1) $\AA$ to be significantly longer than in the only other known $\mathrm{Pd}-\mathrm{Sb}$ complex [2.506 (1) and 2.527 (1) $\AA$ ].
© 1987 International Union of Crystallography

Introduction. Mössbauer studies of palladium and platinum complexes using ${ }^{121} \mathrm{Sb}$ were reported by McAuliffe, Niven \& Parish (1977) and using ${ }^{129} \mathrm{I}$ by Dickinson, Parish \& Dale (1980). The $\left[\mathrm{PdI}_{2}\{\mathrm{Sb}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{2}$ ] complex was assigned a trans configuration on the basis of the Mössbauer spectra and far infrared data. There was some question as to possible association in the solid state to give a five-coordination species. We undertook an X-ray structural study of the title compound to aid in the interpretation of the Mössbauer studies since at that time there were no reported structural studies of palladium-antimony complexes.

Experimental. Crystals of the title compound were grown from dichloromethane. The density was determined by flotation in a dibromoethane-carbon tetrachloride solution. A crystal $0.10 \times 0.22 \times 0.38 \mathrm{~mm}$ mounted on the end of a glass fiber and a $P \overline{1}$ diffractometer with graphite-monochromatized Mo radiation were used for the measurements. Cell dimensions were determined from 15 centered reflections in the $2 \theta$ range of $5-20^{\circ}$. A variable speed ( $1-24^{\circ} \mathrm{min}^{-1}$ ) $\theta-2 \theta$ scan technique was used for the 3108 measurements at room temperature with $2 \theta \leq 45.0^{\circ}$, $h=0 \rightarrow 10, k=-10 \rightarrow 9, \quad l=-11 \rightarrow 10$. Four standard reflections were measured after every 96 reflections. The variation in the intensity of the standards was $\pm 1.5 \%$. After averaging equivalent reflections ( $R_{\text {int }}$ $=0.011$ ), the 2134 reflections with $I \geq 2 \sigma(I)$ were used in the analysis. No absorption correction was made since the value of $\mu r$ was small ( $0 \cdot 20-0.42$ ). Furthermore, any absorption errors will have negligible effects on the positional parameters. There were 137 reflections with $I<2 \sigma(I)$. The structure was solved by the heavy-atom method and the 187 variables were refined by full-matrix least squares. The function minimized was $(\Delta F)^{2}$. Scattering factors were from International Tables for $X$-ray Crystallography (1962) and the real and imaginary components were included in the calculations. The final $R$ and $w R$ values were 0.054 and 0.050 respectively, with a goodness-of-fit of 1.9 . The weights were $1 \cdot 0 /[\sigma(F)]^{2}$ where $\sigma(F)=\left[\sigma(I)^{2}+\right.$ $\left.(0 \cdot 04 I)^{2}\right]^{1 / 2}(\mathrm{Lp})^{1 / 2}$. In the final least-squares cycle the maximum ratio of shift to e.s.d. was less than $0 \cdot 1$. The final positional parameters are given in Table 1 with the bond distances and angles involving Pd or Sb given in Table 2.* A difference Fourier synthesis was used to locate the 15 H atoms on the phenyl rings. A block-matrix least-squares refinement of the H -atom

[^0]Table 1. Final positional parameters $\left(\times 10^{4}\right)$ for the non-hydrogen atoms and equivalent isotropic thermal parameters

| $B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} \beta_{i j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $B_{\text {eq }}\left(\AA^{2}\right)$ |
| Pd | 0* | 0* | $0^{*}$ | $3 \cdot 24$ (4) |
| I | 2674 (1) | 1927 (1) | -279 (1) | 4.94 (4) |
| Sb | 175 (1) | 2322 (1) | 1979 (1) | 3.04 (3) |
| C(1A) | 948 (13) | 4627 (13) | 1875 (10) | $3 \cdot 4$ (4) |
| C(2A) | -55 (14) | 5250 (14) | 2033 (12) | $4 \cdot 1$ (5) |
| $\mathrm{C}(3 A)$ | 388 (15) | 6732 (14) | 1947 (14) | $4 \cdot 6$ (5) |
| C(4A) | 1825 (16) | 7606 (15) | 1705 (13) | $4 \cdot 7$ (5) |
| C(5A) | 2806 (16) | 6975 (15) | 1546 (13) | $4 \cdot 8$ (5) |
| C(6A) | 2397 (14) | 5504 (14) | 1632 (12) | $4 \cdot 1$ (5) |
| C(1B) | 1607 (13) | 2729 (13) | 3839 (11) | 3.4 (4) |
| C(2B) | 1488 (15) | 1481 (15) | 4173 (14) | $4 \cdot 8$ (5) |
| C(3B) | 2353 (17) | 1698 (18) | 5434 (15) | $5 \cdot 5$ (7) |
| C(4B) | 3309 (17) | 3184 (21) | 6310 (16) | $6 \cdot 2$ (7) |
| $\mathrm{C}(5 B)$ | 3463 (21) | 4460 (19) | 5994 (16) | $6 \cdot 7$ (7) |
| C(6B) | 2579 (19) | 4224 (17) | 4745 (14) | $5 \cdot 8$ (6) |
| $\mathrm{C}(1 \mathrm{C})$ | -1873 (12) | 1944 (12) | 2703 (10) | $3 \cdot 0$ (4) |
| C(2C) | -1914 (15) | 2048 (14) | 4088 (12) | $4 \cdot 0$ (5) |
| C(3C) | -3271 (17) | 1743 (16) | 4550 (13) | $5 \cdot 0$ (6) |
| C(4C) | -4585 (16) | 1355 (17) | 3627 (17) | 5.6 (6) |
| C(5C) | -4531 (15) | 1284 (15) | 2222 (14) | 4.9 (5) |
| C(6C) | -3177(14) | 1561 (14) | 1782 (13) | $4 \cdot 3$ (5) |
| * Required by symmetry. |  |  |  |  |

Table 2. Bond distances $(\AA)$ and angles $\left({ }^{\circ}\right)$ involving Pd or Sb and their estimated standard deviations

| $\mathrm{Pd}-\mathrm{I}$ | $2.590(1)$ | $\mathrm{Pd}-\mathrm{Sb}$ | $2.578(1)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Sb}-\mathrm{C}(1 A)$ | $2.135(13)$ | $\mathrm{Sb}-\mathrm{C}(1 B)$ | $2.130(12)$ |
| $\mathrm{Sb}-\mathrm{C}(1 C)$ | $2.125(12)$ | $\mathrm{C}(1 A)-\mathrm{C}(2 A)$ | $1.404(22)$ |
| $\mathrm{C}(1 A)-\mathrm{C}(6 A)$ | $1.396(16)$ | $\mathrm{C}(2 A)-\mathrm{C}(3 A)$ | $1.389(20)$ |
| $\mathrm{C}(3 A)-\mathrm{C}(4 A)$ | $1.388(19)$ | $\mathrm{C}(4 A)-\mathrm{C}(5 A)$ | $1.388(26)$ |
| $\mathrm{C}(5 A)-\mathrm{C}(6 A)$ | $1.384(21)$ | $\mathrm{C}(1 B)-\mathrm{C}(2 B)$ | $1.351(22)$ |
| $\mathrm{C}(1 B)-\mathrm{C}(6 B)$ | $1.374(14)$ | $\mathrm{C}(2 B)-\mathrm{C}(3 B)$ | $1.411(22)$ |
| $\mathrm{C}(3 B)-\mathrm{C}(4 B)$ | $1.356(18)$ | $\mathrm{C}(4 B)-\mathrm{C}(5 B)$ | $1.358(30)$ |
| $\mathrm{C}(5 B)-\mathrm{C}(6 B)$ | $1.403(24)$ | $\mathrm{C}(1 C)-\mathrm{C}(2 C)$ | $1.394(16)$ |
| $\mathrm{C}(1 C)-\mathrm{C}(6 C)$ | $1.389(18)$ | $\mathrm{C}(2 C)-\mathrm{C}(3 C)$ | $1.391(21)$ |
| $\mathrm{C}(3 C)-\mathrm{C}(4 C)$ | $1.396(22)$ | $\mathrm{C}(4 C)-\mathrm{C}(5 C)$ | $1.425(22)$ |
| $\mathrm{C}(5 C)-\mathrm{C}(6 C)$ | $1.381(20)$ |  |  |
| $\mathrm{Pd}-\mathrm{Sb}-\mathrm{C}(1 A)$ | $124.2(3)$ | $\mathrm{C}(1 A)-\mathrm{Sb}-\mathrm{C}(1 B)$ | $103.5(4)$ |
| $\mathrm{Pd}-\mathrm{Sb}-\mathrm{C}(1 B)$ | $109.9(4)$ | $\mathrm{C}(1 A)-\mathrm{Sb}-\mathrm{C}(1 C)$ | $99.9(5)$ |
| $\mathrm{Pd}-\mathrm{Sb}-\mathrm{C}(1 C)$ | $116.4(3)$ | $\mathrm{C}(1 B)-\mathrm{Sb}-\mathrm{C}(1 C)$ | $99.8(4)$ |
| $\mathrm{I}-\mathrm{Pd}-\mathrm{Sb}$ | $87.80(3)$ |  |  |



Fig. 1. An ORTEP drawing (Johnson, 1965) of the title compound illustrating the thermal ellipsoids and atomic numbering. The Pd atom is on a center of symmetry.
positions and an isotropic thermal parameter improved the distances but did not give a statistically significant reduction in the $R$ values. A final difference Fourier synthesis indicated some residual electron density, four small peaks of $1.5-3$ e $\AA^{-3}$ in the vicinity of the Pd, I and Sb atoms. Computer programs written or modified by one of us (GJP) were used in the analysis.

Discussion. An ORTEP (Johnson, 1965) drawing of the molecule is given in Fig. 1 together with the atomic numbering. The $\mathrm{Pd}-\mathrm{Sb}$ distance of $2.578(1) \AA$ is significantly longer than the $\mathrm{Pd}-\mathrm{Sb}$ distances of 2.506 (1) and 2.527 (1) $\AA$ reported by Roberts, Skelton, White \& Wild (1982b) in cis-bis(triphenylstibine)-

## Table 3. Summary of nonbridging Pd-I distances

The REFCODE is the code in the Cambridge Structural Database (Allen, Kennard \& Taylor, 1983). $R$ is the minimum of $R$ and $w R$ as found in the CSD. The column trans gives the atom trans to the given $\mathrm{Pd}-\mathrm{I}$ bond.

| REFCODE | $R$ | Pd-I $(\AA)$ <br> BARTUJ | 0.078 |
| :--- | :---: | :---: | :--- |

References. BAJTUJ: Olmstead, Farr \& Balch (1981). BUNNON: Gray, Gulliver, Levason \& Webster (1983a). CALPUA: Gray, Gulliver, Levason \& Webster (1983b). CASDOP: Fenske \& Christidis (1983). CAXJOA: Roberts, Skelton, White \& Wild (1982a). CMEPDB: Hirschon, Musker, Olmstead \& Dallas (1981). CODJAG: Rheingold \& Fultz (1984). COGXEB: Rutherford, Olmstead \& Balch (1984). COLVOO: Che, Herbstein, Schaefer, Marsh \& Gray (1984). DIDPPD: Debaerdemaeker, Kutoglu, Schmid \& Weber (1973). DIMTPD: Beale \& Stephenson (1970). 1BINPD: Bailey, Walker \& Williams (1972). IBZDPD: Roundhill, Roundhill, Beaulieu \& Bagchi (1980). IMPPPD and IMPPPD0I: Bailey \& Mason (1968). IMTOPD: Clark \& Orbell (1981).
( $\eta^{5}$-cyclopentadienide) palladium(II) hexafluorophosphate. However, in our case the $\mathrm{Pd}-\mathrm{Sb}$ is trans to Sb rather than cis and the lengthening is a trans effect. A similar trans effect has been noted in phosphine complexes; see Clark \& Orbell (1981) for examples and references.
The $\mathrm{Pd}-\mathrm{I}$ distance of 2.590 (1) $\AA$ is very close to the average of 2.595 (18) $\AA$ calculated for the 21 values listed in Table 3 where I is trans to $\mathrm{I}, \mathrm{S}$ or N . If the two extreme $\mathrm{Pd}-\mathrm{I}$ distances of 2.638 and $2.550 \AA$ are excluded, the average is 2.596 (12) $\AA$. However, when I is trans to P , As or C , the $\mathrm{Pd}-\mathrm{I}$ bond lengthens to 2.653 (11) Å. These two different Pd-I bond distances provide a dramatic illustration of the trans effect. The fact that P , As and C have virtually the same effect was somewhat unexpected. It appears that donor atoms trans to the Pd-I bond fall into two categories as shown by the $\mathrm{Pd}-\mathrm{I}$ distance.

The $\mathrm{C}-\mathrm{C}$ distances in the phenyl rings average 1.389 (17) $\AA$, as expected. The $\mathrm{Sb}-\mathrm{C}$ distances average $2 \cdot 130$ (4) $\AA$ and are slightly longer than the value of $2 \cdot 119$ (14) $\AA$ reported by Roberts, Skelton, White \& Wild (1982a). There are no unusually short intermolecular distances between the molecules. Therefore the title compound can be viewed as a square-planar palladium complex separated by van der Waals contacts only.

We thank the Center for Instructional Research Computing Activities, University of Florida, for a grant of computer time.

## References

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
Bailey, N. A. \& Mason, R. (1968). J. Chem. Soc. A, pp. 2594-2605.
Bailey, N. A., Walker, N. W. \& Williams, J. A. W. (1972). J. Organomet. Chem. 37, C49-C50.
Beale, J. P. \& Stephenson, N. C. (1970). Acta Cryst. B26, 1655-1661.
Che, C.-M., Herbstein, F. H., Schaefer, W. P., Marsh, R. E. \& Gray, H. B. (1984). Inorg. Chem. 23, 2572-2575.
Clark, G. R. \& Orbell, J. D. (1981). J. Organomet. Chem. 215, 121-129.
Debaerdemaeker, T., Kutoglu, A., Schmid, G. \& Weber, L. (1973). Acta Cryst. B29, 1283-1288.

Dickinson, R. J., Parish, R. V. \& Dale, B. W. (1980). J. Chem. Soc. Dalton Trans. pp. 895-900.
Fenske, D. \& Christidis, A. (1983). Z. Naturforsch. Teil B, 38, 1295-1298.
Gray, L. R., Gulliver, D. J., Levason, W. \& Webster, M. (1983a). Acta Cryst. C39, 877-879.
Gray, L. R., Gulliver, D. J., Levason, W. \& Webster, M. (1983b). Inorg. Chem. 22, 2362-2366.
Hirschon, A. S., Musker, W. K., Olmstead, M. M. \& Dallas, J. L. (1981). Inorg. Chem. 20, 1702-1706.

International Tables for X-ray Crystallography (1962). Vol. III, pp. 201, 213. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

[^1]Acta Cryst. (1987). C43, 24-26

# Structure of $\mu$-Diethyldithiophosphinato-tris(diethyldithiophosphinato)-tri- $\mu$-thio- $\mu_{3}$-thio-triangulo-trimolybdenum(IV) 

By Hartmut Wunderlich<br>Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstrasse 1, D-4000 Düsseldorf, Federal Republic of Germany

(Received 25 February 1986; accepted 29 July 1986)


#### Abstract

Mo}_{3} \mathrm{~S}_{4}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{PS}_{2}\right\}_{4}\right], M_{r}=1028 \cdot 9\), monoclinic, $\quad P 2_{1} / n, \quad a=11.791$ (2),$\quad b=20.721$ (3),$\quad c=$ $16 \cdot 100$ (3) $\AA, \beta=107 \cdot 50(1)^{\circ}, V=3752$ (1) $\AA^{3}, Z=$ 4, $\quad D_{m}=1.79, \quad D_{x}=1.82 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \bar{\alpha}, \quad \lambda=$ $0.71069 \AA, \mu=1.79 \mathrm{~mm}^{-1}, F(000)=2056,6483$ observed unique reflections (room temperature), $R=$ 0.037 ( 316 parameters). The three Mo atoms together with four bridging S atoms form a trinuclear cluster with local symmetry close to $C_{3 v^{2}}$. Each of the Mo atoms is chelated by a bidentate diethyldithiophosphinato ligand; two Mo atoms are bridged in addition by the remaining diethyldithiophosphinato residue. Preliminary results have been reported [Keck, Kuchen, Mathow \& Wunderlich (1982). Angew. Chem. 94, 927-928; Angew. Chem. Int. Ed. Engl. 21, 929].


Introduction. Trinuclear complexes of transition metals containing sulfur ligands are of well known importance in bioinorganic chemistry (Müller, Diemann, Jostes \& Bögge, 1981). A classification of different trinuclear clusters containing no (type $A$ ), one (type $B$ ) or two (type $C$ ) capping $\mu_{3}$-ligands has been reported by Müller, Jostes \& Cotton (1980). Mo clusters of type $B$ are documented in two forms: in type $B 1$ three single $\mu$-S atoms are bridging each side of the Mo triangle as in the cation $\left[\mathrm{Mo}_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{~S}_{4}\right]^{+}$(Vergamini, Vahrenkamp \& Dahl, 1971), while in type $B 2$ these three S atoms are replaced by $\mathrm{S}_{2}$ groups as in $\mathrm{Mo}_{3} \mathrm{~S}_{7} \mathrm{Cl}_{4}$ (Marcoll, Rabenau, Mootz \& Wunderlich, 1974). In these two as well as in all structures of type $B$ reported thereafter the three Mo atoms have equal coordination numbers. In the compound under study the bridging of the three Mo-Mo bonds was under debate: There was either a cluster of type $B 1$ containing one dithio-
phosphinato ligand as an additional bridge (thus unequal coordination numbers of the Mo atoms) or one of type $C$ with two Mo-Mo bonds bridged by a single S atom while the third side of the triangle is bridged by the dithiophosphinato group.

Experimental. The preparation of the title compound is reported by Keck, Kuchen \& Mathow (1986) and yielded black opaque well shaped crystals of monoclinic habit. A crystal of approximately $0.3 \times$ $0.3 \times 0.4 \mathrm{~mm}$ was used for the refinement of the lattice parameters ( 15 reflections, $33<2 \theta<40^{\circ}$, Mo K $\alpha$ radiation, crystal monochromator, Syntex $P 2_{1}$ ) as well as for the data collection. From systematic absences the space group $P 2_{1} / n$ (cell choice 1 with fully reduced mesh, International Tables for Crystallography, 1983) has been determined. Density, determined by flotation, yielded $Z=4$ formula units per cell. The intensities of 7955 reflections [Mo $K \alpha,(\sin \theta) / \lambda<0.6168 \AA^{-1}$ ] were measured using an $\omega$ scan with variable speeds and a scan width of $0.6^{\circ}$. Because of the large amount of data measurement was performed at an average rate of 115 reflections per hour. Compared with usual data collection (ca 40 refl. $\mathrm{h}^{-1}$ ) this should not increase the positional e.s.d.'s by more than about $20 \%$ (Hope \& Nichols, 1981). The indices ranged from 0 to $h=14$, $k=25$ and from $l=-19$ to $l=18$, the intensities of three standard reflections ( $7,9, \overline{1}, 783, \overline{4}, 13, \overline{4}$ ) did not show significant variations. Seven low-order reflections with too high intensities, systematically absent reflections, and symmetry-equivalent ones have been eliminated. 456 reflections showed background imbalances of more than $2: 1$ of which in general the higher value was in error (probably multiple reflec-
© 1987 International Union of Crystallography


[^0]:    * Tables of anisotropic thermal parameters, bond angles, hydro-gen-atom coordinates and observed and calculated structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43282 (14 pages). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]:    Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
    McAuliffe, C. A., Niven, I. E. \& Parish, R. V. (1977). J. Chem. Soc. Dalton Trans. pp. 1901-1906.
    Olmstead, M. M., Farr, J. P. \& Balch, A. L. (1981). Inorg. Chim. Acta, 52, 47-54.
    Rheingold, A. L. \& Fultz, W. C. (1984). Organometallics, 3, 1414-1417.

    Roberts, G. L., Skelton, B. W., White, A. H. \& Wild, S. B. (1982a). Aust. J. Chem. 35, 2193-2201.
    Roberts, N. K., Skelton, B. W., White, A. H. \& Wild, S. B. (1982b). J. Chem. Soc. Dalton Trans. pp. 2093-2097.
    Roundhill, D. M., Roundhill, S. G. N., Beaulieu, W. B. \& BAGCHI, U. (1980). Inorg. Chem. 19, 3365-3373.
    Rutherford, N. M., Olmstead, M. M. \& Balch, A. L. (1984). Inorg. Chem. 23, 2833-2837.

